
WeederTFBS - 1.2

User Manual

Giulio Pavesi

D.I.Co, University of Milan

Milan, Italy

pavesi@dico.unimi.it

November 14, 2005

Contents

1 Intro 2

2 Unpacking, Compiling and Installing 2

3 Preparing the Input 3

4 Running the Program 3
4.1 Frequency Files . 5

5 Reading the Output 5

6 Running the Program Without the Launcher 6

7 I Got My Output. And Now? 7

8 Using the Locator 7

9 What’s New 8

10 Frequently Asked Questions 8

11 All in All 10

1

1 Intro

WeederTFBS is a minimal, no frills implementation of the Weeder algorithm,
where search parameters and statistical evaluation have been fine–tuned for
the discovery of transcription factor binding sites (TFBSs) in DNA regulatory
regions.

If you downloaded the program, you’re probably already familiar with the
biology of TFBSs. However, you might want to read, other than the NAR and
Bioinformatics papers on Weeder [1, 4], also a brief survey we published on
the computational discovery of TFBSs and methods available as of, well, a few
months ago[2]. Also, an assessment of the performance of various tools for this
task has been performed [3].

”Minimal” and ”no frills” implementation means that we intentionally left
out some computational tricks in order to improve memory efficiency and porta-
bility. And, most of the tricks we use in the general algorithm (Weeder was
originally meant to be a general purpose motif discovery tool) are of little use
in the search for short motifs like TFBS. Unfortunately, the most time consum-
ing part is the statistical evaluation of the motifs (that is, examining all the
approximate forms of each candidate oligo, see the supplementary material of
[1]), that could (and will) be improved in the future versions of the program.

2 Unpacking, Compiling and Installing

The Linux/Unix release of Weeeder comes as a .tar.gz package. To unpack it,
type
gunzip weeder1.2.tar.gz

followed by

tar xvf weeder1.2.tar

At this point, a directory named ”Weeder1.2” should have appeared. Among
other things, it contains a file named ”compileall”, and two directories named
”FreqFiles” and ”src” (containing the source code). To compile the program,
just type:
./compileall

If all went well, four executable files named ”weederlauncher.out”, ”weederTFBS.out”,
”locator.out” and ”adviser.out” have appeared in the directory you’re in. The
programs are written in C, so you should have a C compiler on your computer
(usually, it’s gcc). If you have a C compiler other than gcc, just edit the com-
pileall file, and replace gcc with the name of your compiler.

Instead, if you got the Windows executables, just unzip the file, and you’ll
be exactly at this point.

Important: to run correctly, the program needs the species–specific back-
ground frequency files, contained in the directory ”FreqFiles”. You are free to

2

move the executables wherever you want, as long as the FreqFiles directory is

moved along with them, and it’s kept in the same position w.r.t. the executable

files.

3 Preparing the Input

4 Running the Program

To run the program in the default settings (like the ones used in the Web in-
terface), you can use the ”weederlauncher.out” program. The syntax is the
following:

weederlauncher.out filename organism analysis <additional parameters>

where:

• filename is the input file containing your sequences

• organism is a two letter code denoting the species your sequences come
from. The two letter code (in capitals) corresponds to the initials of the
latin name of the organism: thus, HS is Homo sapiens, MM Mus musculus,
DM D.melanogaster, and so on. NOTICE: bacteria have the code preceded
by ”B”. Thus, BEC is E.coli, BBS is Bacillus subtilis, and so on. The
code–organism correspondence can also be found in the organisms.txt

file.

• analysis the type of analysis you want. This parameter influences the
length of the motifs sought, and the degree of approximation allowed (see
[1]). Suitable values are:

– small: Motifs of length 6 and 8 (quick mode of the Web interface)

– medium: Motifs of length 6 8 and 10.

– large: Motifs of length 6,8, 10 and 12 (normal mode of the interface)

– extra: Same as large, but a higher degree of approximation is allowed
for lengths 8 and 10 (thorough mode of the interface).

We allowed different types of analysis mainly because of the execution time.
While for lengths 6 and 8 it is measured in seconds also for large files and long
sequences, the statistical evaluation needs more time for longer lengths. The
ballpark is minutes for length 10, and (unfortunately) more than 10-15 minutes,
and sometimes even hours or days for length 12. So the idea is, in case of large
files, to limit the analysis to short lengths, and save the ”huge” jobs for later,
in case the results have been interesting. In the following I’ll explain how to
continue a ”short” analysis that has been already completed by adding longer
motifs.

The three parameters above are required, exactly in that order. Plus, you
can specify some additional parameters:

3

• S: consider both strands of the input sequences. Default is single–stranded
analysis.

• A: assume that motifs appear in all the sequences of the set. Default is
that motifs appear in some sequences of the set.

• M: a motif can appear more than once in a sequence. Default is that we
expect a motif to appear once (or not to appear) in each sequence. This
influences the statistical evaluation, not the results (more than a single
occurrence can be reported even if you don’t set this parameter).

• Tn: save the n (that should be an integer number) highest–scoring motifs
of each run. Default is 10. Increasing it increases the number of putative
TFBSs reported after the final post–processing. Viceversa if you reduce
it (in the assessment, we used 5, since we wanted just a single motif for
dataset). The more sequences you have, the longer they are, the more
motifs they can contain: thus 10 is good for yeast: for human, you can
use much higher values. Of course, the motifs reported are only those the
program deems significant: thus if you set 100 and 70 motifs are found,
70 motifs (and not 100) are output.

All in all, writing for example
./weederlauncher.out input.fasta HS large A M S T15

makes the program look for motifs of length 6,8,10, and 12, in both strands
of the input sequences (that come from HS - Homo sapiens), assuming that
motifs appear in all the input sequence, even more than once in each sequences,
and saves the best 15 results of each run.

The launcher program starts a series of runs of the weederTFBS.out pro-
gram, each with a different length and approximation value. The results of the
runs are saved in different files. Suppose that input.fasta is the name of your
input file. The results files are:

• input.fasta.wee This is a text file containing the highest scoring motifs
of each run, as well as the results of the final post–processing (see [1]).
Basically, it’s the file Web users receive by e-mail. At each run, the results
are appended to the end of the file.

• input.fasta.html The same as above, but it’s an HTML file with a better
graphic layout. It’s the file you can see with your browser in the Web
implementation.

• input.fasta.mix This is a ”service” file that the program uses to perform
the final post-processing. It’s created anew each time you use the launcher.

When the runs are completed, the ”adviser” program is started. It reads
the motifs saved in the ”.mix” files, looks for redundant motifs (as explained in
[1]), and appends its advice to the .wee and .html files.

4

4.1 Frequency Files

The FreqFiles directory contains the files that are used by Weeder to assess the
expected frequency values of motifs. Files are species–specific, and contain for
each organism expected values for sixmers and eightmers (expected frequencies
for longer motifs are computed using a Markov model starting from the eightmer
frequencies). The frequencies have been computed by performing an oligo count
of the upstream regions of all the genes annotated for each organism (sequences
come from [5]). Choosing the length of these upstream regions posed a problem.
That is, while for ”simple” organisms (yeasts up to Drosophila) there was no
significant variation by comparing the oligo frequencies in the 1000 bp upstream
and in the whole intergenic regions (Pearson correlation > .9), for human, mouse
and so on the frequencies varied significantly. In the assessment [3] we used for
all the species the frequencies of the 1000 bp upstream of the genes. However,
recent results show how the frequency of some oligos in the intergenic regions is
lower than in the regions immediately upstream from genes, and many of these
oligos are annotated TFBS. Thus, according to these results, using the whole
intergenic regions as backgroud frequencies should better highlight real TFBSs
in core promoters. Unfortunately, using intergenic regions in the assessment
datasets worsened the performance, but this might also depend from the fact
that many of the datasets were not real sequences but ”artificial” sequences
built with a Markov models with planted TFBSs. All in all: for some species
(human, mouse) we included also the intergenic frequency files. Just add ”I”
at the end of the code: HSI for human–intergenic, MMI for mouse, and so on.
And, it would be interesting to compare results obtained with the two types of
background frequencies.

If the organism you’re working on is not in the list of organisms available,
you can send me an e-mail, and I can provide the frequency files needed.

5 Reading the Output

A priori, the best (real?) motifs should be the highest scoring ones of each run.
However, there are two factors to be considered: (1) the highest scoring motifs
very often disagree, i.e., they are completely different, and thus it is hard to
say which is the best one, and (2) unfortunately, real motifs often are not the
highest scoring ones of any run.

In our experiments, we noticed an interesting feature: the ”good” motifs are
often redundant. By ”redundant”, we mean that: (1) if a motif is among the
highest scoring ones of a run searching motifs of length m allowing e substiutions,
then there are other motifs, again among the highest scoring ones of the same
run, whose consensus is within e substitutions from the ”good” one; (2) in the
same run, there are other motifs whose consensus overlaps the ”good” one; (3) in
runs considering motifs of different lengths, there are among the highest scoring
ones motifs whose consensus is contained within the ”interesting” one (if they
are shorter) or contains (if they are longer) the ”interesting” one.

5

All in all, then, the adviser program scans the list of highest scoring motifs
of each run, computing for each one the list of redundant motifs according to
the criteria just explained, and reports in detail only those that have redundant
mates both within the same run and in runs of different length.

So, which ones are the best? If a motif is the highest scoring one of its run
and it is the one with the highest number of redundant companions, than it
should be good; or, if a non-highest scoring one presents a higher number of
relatives w.r.t. another one that according to the score should be better, then
perhaps it is more likely to be ”good”.

6 Running the Program Without the Launcher

Runs of Weeder can of course be started without using the launcher. Required
parameters are:
weederTFBS.out -f filename -W motifwidth -e mismatch number -R sequences percentage

-O organismcode

The additional parameters, other than filename and organism code, are the
motif width (that must be even, ranging from 6 to 12), the error percentage (-e
: number of mismatches allowed), and percentage of sequences (-R) that must
contain the motif. Additional parameters are:

• -S: Process both strands of the input sequences (default is single stranded)

• -T number: report the ”number” highest scoring motifs of the run (de-
fault is 10). Notice the space between -T and the number

• -M: a motif can appear more than once in each sequence (as before, default
is zero or one occurrence per sequence)

• -V: verbose mode.

Notice that by starting a run in this way, results are appended to the
.mix .wee and .html result files. Thus, you can perform a series of runs by
yourself, and at the end nevertheless run the ”adviser” program. Just type
./adviser.out filename, where filename is the original input file of your anal-
ysis. If you performed double–stranded analyses, you can run the adviser to take
this into account, and compare also the reverse complement of the motifs found.
Command line in this case is ./adviser.out filename S (add an ”S” at the
end of the line). In this way, you can expand an analysis by performing the
additional runs. Suppose you completed a medium job (./weederlaucher.out
filename HS medium), and now you want to add motifs of length 12. You can
type

weederTFBS.out -f filename -W 12 -e 30 -R 50 -O HS

The results of this additional run will be appended to the output and .mix
files: if at the end you run the adviser, then you’ll get the additional advice
(appended at the end of the .wee and .html files) considering also motifs of
length 12. Notice instead that every time you run the launcher the .mix file is

6

cleared: thus the new results are processed by themselves. Also, you can save
separately results of different experiments (the .mix files), merge them into a
single .mix file, and run the adviser on the latter. Finally, if you get impatient,
you can run the adviser while Weeder has still to complete an analysis (e.g., it
is working on length 12 but you already have the results on 6,8,and 10), and see
whether something interesting came up in the results.

The launcher program starts a series of run with the following parameters:

• small: length 6 with 1 mutation (-W 6 -e 1), length 8 with 2 mutations
(-W 8 -e 2).

• medium: like small, plus length 10 with 3 mutations (-W 10 -e 3).

• large: like medium, plus length 12 with 4 mutations (-W 12 -e 4).

• extra: length 6 with 1 mutation (-W 6 -e 1), length 8 with 3 mutations
(-W 8 -e 3), length 10 with 4 mutations (-W 10 -e 4), length 12 with 4
mutations (-W 12 -e 4).

7 I Got My Output. And Now?

Well, the first thing to do is to check whether Weeder came up with known
binding sites. You probably already know how to do this, but in case you don’t
you can connect to the TRANSFAC database (or SCPD for yeast). Then, you
can go to the ”site” search and look whether the motif appears in the ”sequence”
field of some site (if the motif is long, you might also check for parts of it). Also,
try some of the occurrences reported by Weeder: often the consensus does not
appear, but some of its approximate occurrences do (and perhaps the most
interesting ones are those common to the motifs reported as ”redundant”). It
takes a bit of copying and pasting, but it’s quite automatic. Also, TFBSs are
annotated for some genes: thus you can also go to the entries corresponding
to your genes, and check whether Weeder reported in their sequence something
that was already annotated. If you find something, you have an hint on a
possible common TF regulating your sequences.

8 Using the Locator

The program called locator.out included in the Weeder package is a utility de-
signed for locating in a set of sequences instances of a motif described with a
consensus. It might be handy for studying more in depth a motif not consid-
ered to be ”interesting” by Weeder, or to re-process the occurrences reported
by the adviser. In fact, the default threshold of 85% for reporting the best oc-
currences of a motif sometimes has the effect of reporting too few or too many
occurrences. The strategy used is the same employed in the adviser program
to locate occurrences of interesting motifs. The program takes as input a set of
sequences, a motif, and threshold values for substitutions and score percentage.

7

The syntax is the following:

./locator.out inputfile consensus substitutions threshold

Parameters must appear in the order they are listed above. ”inputfile” is the
sequence file (in FASTA format); ”consensus” is the motif descriptor, that can
be of any length; substitutions is the maximum number of substitutions in motif
occurrences and, finally, threshold is a number between 1 and 100 indicating the
percentage threshold for the occurrences to be reported. To perform a search on
double strands, add S at the end of the command line. As in the post - processing
performed by the advisor first all the occurrences of the consensus with at most
the specified number of substitutions are collected; then, a frequency matrix is
built; next, the sequences are scanned with the matrix, and all the occurrences
with percentage value greater than the specified threshold are reported. The
”All Occs” and ”Best Occs” matrices are also reported. The output is written
in two files, called inputfile.consensus.wee and inputfile.consensus.html, for text
and html-formatted output, respectively.

9 What’s New

There are a couple of minor changes w.r.t. the original NAR paper:

• Changed the output layout, now more ”MEME-like”.

• Added the locator program. See the corresponding section for instructions.

• Fixed a bug that sometimes computed higher background frequencies for
palindromes and quasi–palindromes in the ”double strand” mode.

• Changed the computation of background frequencies for motifs longer than
8 nts. Instead of proceeding left–to–right we now move from the core to
the edges. For example, let p = p1 . . . p10. We have

Exp(p) = Pr(p1|p2 . . . p8) × Exp(p2 . . . p9) × Pr(p10|p3 . . . p9)

Analogously for motifs of length 12.

10 Frequently Asked Questions

• Can I use the program for UTRs or introns?. A priori, yes. My
suggestion is to use upstream frequencies for UTR (whose definition is
very often quite blurred) and intergenic for introns.

• Can I use the program for the analysis of the same gene from dif-
ferent organisms? Yes. As a matter of fact, TFBSs are often more con-
served in orthologous sequences than in the same organism. Just choose

8

the frequencies of your ”reference” species, and set motifs appearing in
all sequences. Advice: report many motifs (even 100!) in each run, since
there will be many conserved and overlapping motifs. However, we are
addressing this type of analysis right now, and we are preparing a special
version of Weeder for this case, that takes into account some additional
considerations.

• In the Nature Biotechnology assessment [3], the performance of
the various tools on human have been quite disappointing: is
there any chance to get some useful result? One reason for the
worse performance of motif discovery tools on human and mouse could be
that, while in yeast a few TFBSs are responsible for the transcription of
a gene, in metazoa the regulation is more complex, i.e. regulatory regions
contain many more TFBSs. In the assessment we were asked to report
just one motif per dataset: and often, in my results, the answer was in the
list, but not in the best spot. To give an example, I got on several man
and mouse datasets SP1 BSs as best answer, in one I had a perfect TATA
box (even located 20bps upstream from the gene!). Unfortunately, in these
cases there were other binding sites that corresponded to the ”solution”.
Finally, we did not use the double strand option (and, after a bug in the
code has been fixed, it surely can somewhat improve the performance of
Weeder).

Thus, the idea is to report more than 10 motifs (this parameter was set
to have one or two motifs), and to look also to non highest scoring motifs.
Another idea is to select from the sequences the most conserved parts w.r.t.
orthologous genes, and mask out from the sequences the non–conserved
parts. This is quite a tedious work, but reduces false positives. Also,
you can cross-check the results with an analysis on orthologous sequences
performed with Weeder.

• I want to explore a motif by myself, or one that wasn’t reported
as interesting by Weeder. You can use the pattern matching facilities
at RSAT tools (http://rsat.ulb.ac.be/rsat/ [5]). Quite easy to use,
they allow you to perform exactly the same type of analysis the adviser
performs on interesting motifs (including building a frequency matrix),
plus it has a nice graphical output. Moreover, the occurrences reported
by the adviser are collected by using the ”All Occs” matrix. With these
tools, you may perform an additional scan of the sequences using the ”Best
Occs” matrix, build a new one by using the occurrences collected, and so
on.

• Is there any chance to find TFBS in enhancers located far away
from the genes?. Unfortunately, given the statistical evaluation we
perform, running the program on, say, the 20Kbp upstream of your genes
does not work. You’ll probably get only false positives. A partial solution
is to run the program on core promoters separately. Then, for far away
regions, to filter them by aligning with orthologous sequences, until from

9

the 20kbp you get about 1-2 K of conserved sequence and mask out the
rest. We anyway will address this problem in the next version of Weeder.

• Will FC Inter Milan even win the Italian Soccer League? Sure.
Next year.

11 All in All

Well, this is basically it. If you have any bug report, question concering the
program, its usage, or the best way to use it to perform a given analysis, or for
adding new organisms, feel free to contact me (pavesi@dico.unimi.it). Good
luck with your research, and in case we’ve been useful, don’t forget to cite us!

References

[1] Pavesi G, Mereghetti P, Mauri G, Pesole G. Weeder Web: discovery of
transcription factor binding sites in a set of sequences from co-regulated
genes. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W199-203.

[2] Pavesi G, Mauri G, Pesole G. In silico representation and discovery of
transcription factor binding sites. Brief Bioinform. 2004 Sep;5(3):217-36.

[3] Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov
AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS,
Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden
J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z. Assessing com-
putational tools for the discovery of transcription factor binding sites. Nat

Biotechnol. 2005 Jan;23(1):137-44.

[4] Pavesi G, Mauri G, Pesole G. An algorithm for finding signals of unknown
length in DNA sequences. Bioinformatics 2001;17 Suppl 1:S207-14.

[5] van Helden J. Regulatory sequence analysis tools. Nucleic Acids Res. 2003
Jul 1;31(13):3593-6.

10

